Stamping Die Essentials: First, determine the process of making a stamped part

Process Engineering and Die Design
Don’t confuse a die designer with a process engineer. Process engineers determine the process steps that must be executed to transform flat sheet metal from a blank to a finished part. It may take a single-station line die or a 40-station progressive die. This is undisputedly the most important step that determines the success of the stamping operation. If the process for making the part, even a single forming or cutting operation, is not correct, the die and stamping process will fail.

Die designers determine the mechanical means for executing these process steps as easily as possible. The die designer makes decisions such as tool steel type, die geometry, and die length. Experienced die designers often act as the process engineer as well, meaning they determine the number of steps needed to make the part, as well as design the mechanical means of executing the process.

Part Geometry and Material
Before determining the steps needed to make the part, you must analyze the part print, looking carefully at the part geometry, the specified tolerance, and the material type and thickness. These last two factors are critical when deciding on the manufacturing process steps and tool design. Don’t assume the part can be made from the specified material. Just because it’s been designed to be made from a certain metal doesn’t mean it can be made from that material.

To make a good decision on the process steps required for part manufacture, both the process engineer and die designer must understand the effects that the part material has on the process and the tool design. The part material influences:

Read more: Stamping Die Essentials: First, determine the process of making a stamped part